Two-sample extended empirical likelihood for estimating equations
نویسندگان
چکیده
منابع مشابه
Extended empirical likelihood for estimating equations
We derive an extended empirical likelihood for parameters defined by estimating equations which generalizes the original empirical likelihood for such parameters to the full parameter space. Under mild conditions, the extended empirical likelihood has all asymptotic properties of the original empirical likelihood. Its contours retain the data-driven shape of the latter. It can also 10 attain th...
متن کاملMultivariate two-sample extended empirical likelihood
Jing (1995) and Liu et al. (2008) studied the two-sample empirical likelihood and showed it is Bartlett correctable for the univariate and multivariate cases, respectively. We expand its domain to the full parameter space and obtain a two-sample extended empirical likelihood which is more accurate and can also achieve the second-order accuracy of the Bartlett correction. AMS 2000 subject classi...
متن کاملExtending the two-sample empirical likelihood method
In this paper we establish the empirical likelihood method for the two-sample case in a general framework. We show that the result of Qin and Zhao (2000) basically covers the following two-sample models: the differences of two sample means, smooth Huber estimators, distribution and quantile functions, ROC curves, probability-probability (P-P) and quantile-quantile (Q-Q) plots. Finally, the stru...
متن کاملEmpirical Likelihood for Estimating Equations with Nonignorably Missing Data.
We develop an empirical likelihood (EL) inference on parameters in generalized estimating equations with nonignorably missing response data. We consider an exponential tilting model for the nonignorably missing mechanism, and propose modified estimating equations by imputing missing data through a kernel regression method. We establish some asymptotic properties of the EL estimators of the unkn...
متن کاملEmpirical Likelihood for Estimating Equations with Missing Values
We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide-ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always obse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2015
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2015.07.009